精英家教网 > 高中数学 > 题目详情
设函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为
1
2
,则a=
4或
1
4
4或
1
4
分析:分a>1和0<a<1两种情况来解,注意利用函数的单调性求出最值,再应用条件求a.
解答:解:当a>1时,f(x)=logax在区间[a,2a]上是增函数,故最大值为f(2a),最小值为f(a),
所以loga(2a)-logaa=
1
2

所以a=4,满足a>1,
当0<a<1时,f(x)=logax在区间[a,2a]上是减函数,故最大值为f(a),最小值为f(2a),
所以logaa-loga(2a)=
1
2

所以a=
1
4
,满足0<a<1,
综上所述,a=4或a=
1
4

故答案为:4或
1
4
点评:本题考查函数的单调性与特殊点,体现分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源:陕西省汉中地区2007-2008学年度高三数学第一学期期中考试试卷(理科) 题型:022

若函数f(x)=的定义域为M,g(x)=lo(2+x=6x2)的单调递减区间是开区间N,设全集U=R,则M∩CU(N)=________.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:山东省莒南一中2008-2009学年度高三第一学期学业水平阶段性测评数学文 题型:044

设f(x)=lo的奇函数,a为常数,

(Ⅰ)求a的值;

(Ⅱ)证明:f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>()x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案