精英家教网 > 高中数学 > 题目详情
对于下列命题:
a
=(-1,1)在
b
=(3,4)方向上的投影为
1
5

②若|
a
b
|=|
a
|•|
b
|
,则
a
b

③在△ABC中,A>B?sinA>sinB;
④若数列{an}{bn}是等比数列,则数列{an+bn}也是等比数列;
⑤在△ABC中,若tanAtanB>1,则△ABC一定是锐角三角形.
以上正确的命题的序号是
①②③⑤
①②③⑤
分析:①利用向量投影的定义求值.②利用向量的数量积和向量共线的条件判断.③利用正弦定理进行判断.④利用等比数列的心中判断.⑤利用两角和的正切公式或三角函数的性质判断.
解答:解:①根据向量投影的概念可知,
a
=(-1,1)在
b
=(3,4)方向上的投影
a
?
b
|
b
|
=
-3+4
32+42
=
1
5
,所以①正确.
②若|
a
b
|=|
a
|•|
b
|
,当
a
b
有一个为零向量时,满足
a
b
,当
a
b
都不是零向量时,得|cos<
a
b
>|=1,所以<
a
b
>=0或π,
所以满足
a
b
,所以②正确.
③在三角形中,根据正弦定理得A>B?a>b?sinA>sinB,所以③正确.
④若数列{an}{bn}是等比数列,不妨设an=1,bn=-1,但an+bn=1-1=0,所以此时数列{an+bn}不可能是等比数列,所以④错误.
⑤由tanAtanB>1,得tanA>0,tanB>0,所以A,B都是锐角.又tan?(A+B)=
tan?A+tan?B
1-tan?A?tan?B
=-tan?C<0
,所以tanC>0,即C也为锐角,即△ABC一定是锐角三角形,所以⑤正确.
故答案为:①②③⑤.
点评:本题主要考查了与向量和三角函数有关的命题的真假判断,综合性较强,涉及的知识点较多.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=
(x-3)e-x,x≥0
2ax-3,x<0
(a为常数,且a>0),对于下列命题:
①函数f(x)在每一点处都连续;
②若a=2,则函数f(x)在x=0处可导;
③函数f(x)在R上存在反函数;
④函数f(x)有最大值
1
e4

⑤对任意的实数x1>x2≥0,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;
②已知a,b,c是△ABC的三边长,若a=2,b=5,A=
π
6
,则△ABC有两组解;
③设a=sin
2012π
3
b=cos
2012π
3
c=tan
2012π
3
,则a>b>c;
④将函数y=2sin(3x+
π
6
)
图象向左平移
π
6
个单位,得到函数y=2cos(3x+
π
6
)
图象.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;
②已知a,b,c是△ABC的三边长,若a=2,b=5,A=
π
6
,则△ABC有两组解;
③设a=sin
2012π
3
b=cos
2012π
3
c=tan
2012π
3
,则a>b>c;
④将函数y=2sin(3x+
π
6
)
图象向左平移
π
6
个单位,得到函数y=2cos(3x+
π
6
)
图象.
其中正确命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c,d∈R,对于下列命题:
①若a>b,c≠0,则ac>bc; 
②若a>b,则ac2>bc2
③若ac2>bc2,则a>b;   
④若a>b,则
1
a
1
b

⑤若a>b>0,c>d,则ac>bd
其中错误的命题是
①②④⑤
①②④⑤

查看答案和解析>>

同步练习册答案