精英家教网 > 高中数学 > 题目详情
已知在区间上是增函数,实数组成集合;设关于的方程的两个非零实根实数使得不等式使得对任意恒成立,则的解集是(   )
A.B.
C.D.
A

试题分析:∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
方法一:①?φ(1)=1-a-2≤0且φ(-1)=1+a-2≤0?-1≤a≤1,
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
方法二:
①?,φ(-1)=1+a-2≤0或,φ(1)=1-a-2≤0?0≤a≤1或-1≤a≤0
?-1≤a≤1.
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
=,得x2-ax-2=0,∵△=a2+8>0,∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,从而|x1-x2|===∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
方法一:
②?g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.,
方法二:
当m=0时,②显然不成立;
当m≠0时,
②?m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.,选A.
点评:解决该试题的关键是根据一元二次方程根与系数的关系写出不等式先看成关于a的不等式恒成立再看成关于t的一次不等式恒成立,让两端点大等于零,以及函数单调递增导数大于等于零列出不等式解之
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

下列5个判断:
①若上增函数,则
②函数只有两个零点;
③函数的值域是
④函数的最小值是1;
⑤在同一坐标系中函数的图像关于轴对称。
其中正确命题的序号是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且.
(Ⅰ)若点Q的坐标是,求的值;
(Ⅱ)若函数,求的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为的定义域为,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知函数.
(1)若函数的值域为,求a的值;
(2)若函数上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域是_______________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)函数定义在R上的偶函数,当时, 
(1)写出单调区间;
(2)函数的值域;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知x∈[0,1],则函数y=的值域是       

查看答案和解析>>

同步练习册答案