科目:高中数学 来源:2010年江西省新余一中高二第一次段考理科数学试卷 题型:解答题
已知等差数列的首项为a,公差为b,等比数列的首项为b,公比为a,其中a、b都是大于1的正整数,且。
①求a的值;
②对于任意的,总存在,使得成立,求b;
③令,问数列中是否存在连续三项成等比数列,若存在,求出所有成等比数列的连续三项,若不存在,请说明理由。(14分)
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一下学期第二次月考数学试卷(解析版) 题型:解答题
已知等差数列的首项为a,公差为b,等比数列的首项为b,公比为a,其中a,b均为正整数,若。
(1)求、的通项公式;
(2)若成等比数列,求数列的通项公式。
(3)设的前n项和为,求当最大时,n的值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省无锡市高三上学期期中考试数学(解析版) 题型:解答题
.(本题满分16分)
已知等差数列的首项为,公差为b,等比数列的首项为b,公比为a(其中a,b均为正整数)。
(I)若,求数列的通项公式;
(II)对于(1)中的数列,对任意在之间插入个2,得到一个新的数列,试求满足等式的所有正整数m的值;
(III)已知,若存在正整数m,n以及至少三个不同的b值使得等成立,求t的最小值,并求t最小时a,b的值。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高考猜押题卷文科数学(一)解析版 题型:解答题
(本小题满分14分)
已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,,且.
(Ⅰ) a的值;
(Ⅱ) 若对于任意,总存在,使,求b的值;
(Ⅲ) 在(Ⅱ)中,记是所有中满足, 的项从小到大依次组成的数列,又记为的前n项和,是的前n项和,求证:≥.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com