精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=x-
1x

(1)求:函数f(x)的定义域;判断函数f(x)的奇偶性并说明理由;
(2)判断函数f(x)在(0,+∞)上的单调性,并用定义加以证明.
分析:(1)确定函数定义域且关于原点对称,利用奇函数的定义可判断;
(2)判断:函数f(x)在(0,+∞)上是增函数,证明按照取值、作差、变形定号、下结论步骤即可.
解答:解:(1)定义域:(-∞,0)∪(0,+∞),定义域关于原点对称,
∵f(-x)=-x-
1
-x
=-x+
1
x
=-f(x),
∴函数f(x)是奇函数
(2)判断:函数f(x)在(0,+∞)上是增函数,
证明:任取x1,x2∈(0,+∞)且x1<x2
∴f(x1)-f(x2)=x1-
1
x1
-(x2-
1
x2
)=(x1-x2)(1+
1
x1x2

∵x1<x2,x1,x2∈(0,+∞)
∴x1-x2<0,1+
1
x1x2
>0
∴f(x1)-f(x2)<0
∴f(x1)<f(x2
∴函数f(x)在(0,+∞)上是增函数.
点评:本题考查函数的奇偶性,考查函数的单调性的判定与证明,解题的关键是按照取值、作差、变形定号、下结论步骤证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x0函数f(x)=(
1
3
)x-log2x
的零点,若0<x1<x0,则f(x1)的值为(  )
A、恒为负值B、等于0
C、恒为正值D、不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
x2+4x

(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(-∞,-2)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,则m=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,则m=(  )

查看答案和解析>>

同步练习册答案