精英家教网 > 高中数学 > 题目详情
如果函数f(x)对任意的实数x,存在常数 M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函.给出下面三个函数:①f(x)=1;②f(x)=x2;③.其中属于有界泛函的是( )
A.①
B.②
C.③
D.①②③
【答案】分析:根据有界泛函的定义逐项判断即可:①可取x=0说明f(x)不属于有界泛函;②可说明x≠0时,有无最大值;③可根据定义作出证明;
解答:解:①对于f(x)=1,当x=0时,有|f(x)|=1>M×0=0,故f(x)=1不属于有界泛函;
②对于f(x)=x2,当x≠0时,有无最大值,f(x)=x2不属于有界泛函;
③对于f(x)=,当x≠0时,有=,当x=0时,|f(x)|=
故f(x)=属于有界泛函;
故选C.
点评:本题考查函数恒成立问题、新定义,考查学生分析解决问题的能力,注意体会恒成立问题的否定方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记gn(x)=
f(x)
n
(n∈N*)
.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有[gn(x)]≥0,则称f(x)为“n阶不减函数”([gn(x)]为函数gn(x)的导函数).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“n阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“n阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记gn(x)=
f(x)
xn
(n∈N*)
.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有[gn(x)]≥0,则称f(x)为“n阶不减函数”([gn(x)]为函数gn(x)的导函数).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“2阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“2阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:022

已知函数y=f(x),设x0是定义域内任一点,如果对x0附近的所有点x,都有f(x)<f(x0),则称函数f(x)在点x0处取_________,记作_________.并把x0称为函数f(x)的一个_________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记数学公式.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有数学公式,则称f(x)为“n阶不减函数”(数学公式为函数gn(x)的导函数).
(1)若数学公式既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“2阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“2阶负函数”?并说明理由.

查看答案和解析>>

同步练习册答案