【题目】教材曾有介绍:圆
上的点
处的切线方程为
.我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用.已知,直线
与椭圆
有且只有一个公共点.
![]()
(1)求
的值
(2)设
为坐标原点,过椭圆
上的两点
分别作该椭圆的两条切线
,且
与
交于点
.当
变化时,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】数列
满足
,
,
为非零常数.
(1)是否存在实数
,使得数列
成为等差数列或等比数列,若存在,找出所有的
,及对应的通项公式;若不存在,说明理由;
(2)当
时,记
,证明:数列
是等比数列;
(3)求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程为
,直线
,直线
.以极点
为原点,极轴为
轴的正半轴建立平面直角坐标系.
(1)求直线
,
的直角坐标方程以及曲线
的参数方程;
(2)已知直线
与曲线
交于
两点,直线
与曲线
交于
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
上任意一点到其焦点的距离的最小值为1.
,
为抛物线上的两动点(
、
不重合且均异于原点),
为坐标原点,直线
、
的倾斜角分别为
,
.
(1)求抛物线方程;
(2)若
,求证直线
过定点;
(3)若
(
为定值),探求直线
是否过定点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农户计划种植莴笋和西红柿,种植面积不超过
亩,投入资金不超过
万元,假设种植莴笋和西红柿的产量、成本和售价如下表:
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
莴笋 | 5吨 | 1万元 | 0.5万元 |
西红柿 | 4.5吨 | 0.5万元 | 0.4万元 |
那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
(
)到点
的距离与点
到
轴的距离的差等于1,
(1)求动点
的轨迹
的方程;
(2)过点
的直线
与轨迹
相交于不同于坐标原点
的两点
,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知城市
周边有两个小镇
、
,其中乡镇
位于城市
的正东方
处,乡镇
与城市
相距
,
与
夹角的正切值为2,为方便交通,现准备建设一条经过城市
的公路
,使乡镇
和
分别位于
的两侧,过
和
建设两条垂直
的公路
和
,分别与公路
交汇于
、
两点,以
为原点,
所在直线为
轴,建立如图所示的平面直角坐标系
.
![]()
(1)当两个交汇点
、
重合,试确定此时
路段长度;
(2)当
,计算此时两个交汇点
、
到城市
的距离之比;
(3)若要求两个交汇点
、
的距离不超过
,求
正切值的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com