精英家教网 > 高中数学 > 题目详情
4.求函数f(x)=(tan3x-tanx)(sin2x-sin4x) 的值域.

分析 利用二倍角,三倍角,四倍角公式,化简函数的解析式为f(x)=$\frac{4si{n}^{4}x-4si{n}^{2}x}{1-4{sin}^{2}x}$,令t=sin2x,则t∈[0,$\frac{1}{4}$)∪($\frac{1}{4}$,1],y=f(x)=$\frac{4{t}^{2}-4t}{1-4t}$,利用导数法,分析函数的单调性,进而可得函数的值域.

解答 解:∵f(x)=(tan3x-tanx)(sin2x-sin4x)
=($\frac{3tanx-{tan}^{3}x}{1-3{tan}^{2}x}$-tanx)[2sinxcosx+4(cosx•sinx•(2sin2x-1)]
=$\frac{2tanx+2{tan}^{3}x}{1-3{tan}^{2}x}$•(2sin3xcosx-2sinxcosx)
=$\frac{2sinx({cos}^{2}x{+sin}^{2}x)}{cosx({cos}^{2}x-3{sin}^{2}x)}$•(2sin3xcosx-2sinxcosx)
=$\frac{2sinx}{cosx({cos}^{2}x-3{sin}^{2}x)}$•(2sin3xcosx-2sinxcosx)
=$\frac{4si{n}^{4}x-4si{n}^{2}x}{{cos}^{2}x-3{sin}^{2}x}$
=$\frac{4si{n}^{4}x-4si{n}^{2}x}{1-4{sin}^{2}x}$
令t=sin2x,则t∈[0,$\frac{1}{4}$)∪($\frac{1}{4}$,1],y=f(x)=$\frac{4{t}^{2}-4t}{1-4t}$,
∵y′=$\frac{-16{t}^{2}+8t-4}{(1-4t)^{2}}$<0在t∈[0,$\frac{1}{4}$)∪($\frac{1}{4}$,1]时,恒成立,
故y=$\frac{4{t}^{2}-4t}{1-4t}$在[0,$\frac{1}{4}$)和($\frac{1}{4}$,1]上均为减函数,
又由当t=0和t=1函数值均为0,
故t∈[0,$\frac{1}{4}$)时,y∈(-∞,0],
t∈($\frac{1}{4}$,1]时,y∈[0,+∞),
故函数的值域为R.

点评 本题考查的知识点是二倍角,三倍角,四倍角公式,换元法,本题转化困难,运算量大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,正三棱柱ABC-A′B′C′中,F是线段B′C′的中点,D,E分别是线段BB′,B′C′上的点,连接DE,BF,A′E,A′F,A′D,A′B,AC′,且2B′D=DB,B′E=$\frac{1}{4}$B′C′.
(1)探究平面A′BF与平面BCC′B′的位置关系,并进行说明;
(2)证明:AC′∥平面 A′DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求证:$\frac{1-co{s}^{4}θ-si{n}^{2}θ}{1-si{n}^{4}θ-co{s}^{2}θ}$=$\frac{1-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数的图象的顶点是(2,3),且经过点(3,1),求这个函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若向量$\overrightarrow{a}$=(m,-4),|$\overrightarrow{a}$|=2$\sqrt{5}$,则m=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),求$\overrightarrow{a}$•$\overrightarrow{b}$和cos<$\overrightarrow{a}$•$\overrightarrow{b}$>.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x}{9}-\frac{{y}^{2}}{{b}^{2}}=1$(b>0)的左,右焦点分别为F1,F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若|AB|=6,则△PQF1的周长为(  )
A.10B.12C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sinxcos(x+$\frac{π}{6}$)的最小值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知3a=2,3b=8,求38a-2b的值.

查看答案和解析>>

同步练习册答案