精英家教网 > 高中数学 > 题目详情
某计算机程序每运行一次都随机出现一个二进制的4位数N=n1,n2,n3,n4,其中N的各位数字中n1=1,n4是随机(等可能性)地出现0或1,而n2和n3出现0的概率为
3
5
,出现1的概率为
2
5
,记ξ=n1+n2+n3+n4
(1)求ξ=3时的概率;
(2)求ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式,离散型随机变量及其分布列
专题:概率与统计
分析:(1)利用互斥事件乘法公式能求出P(ξ=3).
(2)由已知得ξ的可能取值为1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答: 解:(1)P(ξ=3)=
2
5
×
2
5
×
1
2
+
3
5
×
2
5
×
1
2
+
2
5
×
3
5
×
1
2
=
13
25

(2)由已知得ξ的可能取值为1,2,3,4,
P(ξ=1)=
3
5
×
3
5
×
1
2
=
9
50

P(ξ=2)=
2
5
×
3
5
×
1
2
+
3
5
×
2
5
×
1
2
+
2
5
×
2
5
×
1
2
=
13
25

P(ξ=3)=
2
5
×
2
5
×
1
2
+
3
5
×
2
5
×
1
2
+
2
5
×
3
5
×
1
2
=
13
25

P(ξ=4)=
3
5
×
3
5
×
1
2
=
9
50

∴ξ的分布列为:
 ξ 1 2 3 4
 P 
9
50
 
13
25
 
13
25
 
9
50
Eξ=
9
50
+2×
13
25
+3×
13
25
+4×
9
50
=
7
2
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b∈R,则“a=b”是“a2=b2”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
2
,α为第二象限角,则tanα的值是(  )
A、-
3
B、-
3
3
C、-
1
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2
-i3
1-
2
i
的共轭复数为(  )
A、i
B、-i
C、2
2
-i
D、-2
2
+i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,m},B={x|0<x<2},若A∩B={1,m},则m的取值范围是(  )
A、(0,1)
B、(1,2)
C、(0,1)∪(1,2)
D、(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x
x-1
>1的解集是(  )
A、(-∞,0)
B、(1,+∞)
C、(0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),Q(3
3
5
4
b),又M,N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,
3
4
b),且△QMN的重心在C2上,求椭圆C1和抛物线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+mx2+nx+k的图象过点 P(0,3),且在点M(1,f(1))处的切线方程为6x-y=0.(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若不等式f(x)≤x3+lnx+c有解,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用函数f(x)=(
3
5
x+(
4
5
x(x∈R)是减函数可以求方程(
3
5
x+(
4
5
x=1的解.由f(2)=1可知原方程有唯一解x=2,类比上述思路可知不等式x6-(x+2)>(x+2)3-x2的解集是
 

查看答案和解析>>

同步练习册答案