| A. | -36 | B. | -30 | C. | -27 | D. | -20 |
分析 a4=7且4Sn=n(an+an+1),可得:a2=3a1,a3=5a1,a4=7a1=7,解得a1,a2,a3,a4,…,猜想an=2n-1.可得Sn=n2.验证满足4Sn=n(an+an+1),代入Sn-
6an,再利用二次函数的单调性即可得出.
解答 解:∵a4=7且4Sn=n(an+an+1),
可得:a2=3a1,a3=5a1,a4=7a1=7,
解得a1=1,a2=3,a3=5,a4=7,…,
猜想an=2n-1.
可得Sn=n2.
验证满足4Sn=n(an+an+1),
∴Sn-6an=n2-6(2n-1)=n2-12n+6=(n-6)2-30≥-30,
当且仅当n=6时取等号,
∴Sn-6an的最小值为-30.
故选:B.
点评 本题考查了递推关系的应用、数列的通项公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0) | B. | (-1,0) | C. | (-2,-1) | D. | [-2,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com