精英家教网 > 高中数学 > 题目详情
19.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO.
(1)求证PO⊥AC;
(2)求异面直线PA与OE所成角的大小.

分析 (1)由PO是圆锥的高,得PO⊥底面圆O,由此能证明PO⊥AC.
(2)由已知得∠BAC=45°,OE∥AC,从而异面直线PA与OE所成角即为∠PAC,由此能求出异面直线PA与OE所成角的大小.

解答 (1)证明:∵PO是圆锥的高,
∴PO⊥底面圆O,
又AC∈底面圆O,
∴PO⊥AC.
(2)解:∵C为半圆弧AB的中点,∴∠AOC=90°=∠BOC,
∴∠BAC=45°,
又∵E为劣弧CB的中点,
∴∠BOE=45°=∠BAC,∴OE∥AC,
∴异面直线PA与OE所成角即为∠PAC,
∵AB=2PO,又直径AB=2AO,∴PO=AO,
∵PO⊥底面圆O,∴PO⊥OC,即∠POC=90°=∠AOC,
∴△AOC≌△POC,∴AC=PC,
又∵圆锥母线PA=PC,∴△PAC为正三角形,
∴∠PAC=60°,
∴异面直线PA与OE所成角的大小为60°.

点评 本题考查异面直线垂直的证明,考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2,AB=4,EF⊥CD,则EF与AB所成的角为(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则Sn-6an的最小值为(  )
A.-36B.-30C.-27D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x3-3a2x-6a2+4a(a>0)有且仅有一个零点x0,若x0>0,则a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn,满足2Sn+bn=1
(1)求数列{an}、{bn}的通项公式;
(2)如果cn=anbn,设数列{cn}的前n项和为Tn,求证:Tn<Sn+$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sinA是有理数,求证:对任意正整数n,cos2nA是有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设p、q为两个简单命题,若“p∧q”为真命题,则“¬p”为假命题(填“真”或“假”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各题
(1)(2$\frac{3}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-(0.01)0.5    
(2)(a-2b-3)•(-4a-1b)÷(12a-4b-2c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下判断正确的是(  )
A.命题“在锐角△ABC中,有sinA>cosB”为真命题
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
D.“b=0”是“f(x)=ax2+bx+c是偶函数”的充分不必要条件

查看答案和解析>>

同步练习册答案