精英家教网 > 高中数学 > 题目详情
已知向量
OA
=(cosα,sinα), 
OB
=(1+sinα,1-cosα)
,则|
AB
|的最大值是(  )
分析:利用向量模的计算公式和三角函数的单调性即可得出.
解答:解:∵
AB
=(1+sinα-cosα,1-cosα-sinα).
|
AB
|
=
(1+sinα-cosα)2+(1-cosα-sinα)2

=
2(1-cosα)2+2sin2α
=
4-4cosα
8
=2
2
,当且仅当cosα=-1时取等号.
故选C.
点评:熟练掌握向量模的计算公式和三角函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中结果为零向量的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中结果为零向量的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案