【题目】已知数列
中,满足
记
为
前n项和.
(I)证明:
;
(Ⅱ)证明: ![]()
(Ⅲ)证明:
.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】试题分析:(1)因为
所以
作差,变形可得
用数学归纳法证明
即可;(2)关于n的等式用数学归纳法证明;(3)由同角三角函数基本关系式
和
得
,再由
得
,化简可得
。再由数列的前n项和及等比数列前n项和公式可得结论。
试题解析:证明:(I)因![]()
故只需要证明
即可 ……………………………………………………3分
下用数学归纳法证明:
当
时,
成立
假设
时,
成立,
那么当
时,
,
所以综上所述,对任意
,
…………………………………………6分
(Ⅱ)用数学归纳法证明![]()
当
时,
成立
假设
时, ![]()
那么当
时, ![]()
所以综上所述,对任意
,
…………………………10分
(Ⅲ)
得
…12分
故
……15分
科目:高中数学 来源: 题型:
【题目】教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的
列联表(单位:人)
![]()
(1)能够据此判断有97.5%把握热内加强语文阅读训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明现正确解答完的概率;
(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们点答题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2log3an+1,且数列{
}的前n项和为Tn . 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题; ![]()
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
过两点
,
,且圆心
在直线
上.
(Ⅰ)求圆
的标准方程;
(Ⅱ)直线
过点
且与圆
有两个不同的交点
,
,若直线
的斜率
大于0,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线
使得弦
的垂直平分线过点
,若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)在平面直角坐标系xOy中,已知两点
和
,动点M满足
,设点M的轨迹为C,半抛物线
:
(
),设点
.
(Ⅰ)求C的轨迹方程;
(Ⅱ)设点T是曲线
上一点,曲线
在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com