精英家教网 > 高中数学 > 题目详情
已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 
分析:利用正弦定理化简表达式,通过两角和的正弦函数公式,求出sinA的关系式,求出cosB即可得到结果.
解答:解:因为
cosB
cosC
=-
b
2a+c
所以
cosB
cosC
=-
sinB
2sinA+sinC
,即2sinAcosB+sinCcosB+cosCsinB=0
所以2sinAcosB+sin(C+B)=0,2sinAcosB+sinA=0,因为A是三角形内角,所以2cosB+1=0,
cosB=-
1
2
,所以B=
3

故答案为:
3
点评:本题是基础题,考查正弦定理的应用,三角形的边角关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案