精英家教网 > 高中数学 > 题目详情
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 
分析:先根据A+C=2B及A+B+C=180°求出B的值,再由正弦定理求得sinA的值,再由边的关系可确定A的值,从而可得到C的值确定最后答案.
解答:解:由A+C=2B及A+B+C=180°知,B=60°,
由正弦定理知,
1
sinA
=
3
sin60°

sinA=
1
2

由a<b知,A<B=60°,则A=30°,C=180°-A-B=90°,
于是sinC=sin90°=1.
故答案为:1.
点评:本题主要考查正弦定理的应用和正弦函数值的求法.高考对三角函数的考查以基础题为主,要强化记忆三角函数所涉及到的公式和性质,做到熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案