精英家教网 > 高中数学 > 题目详情
4.已知命题p:?x∈R,x<-1,则该命题的否定是¬p:?x∈R,x≥-1.

分析 由全称命题的否定为特称命题,即可得到所求命题的否定.

解答 解:由全称命题的否定为特称命题,可得
命题p:?x∈R,x<-1,则该命题的否定是¬p:?x∈R,x≥-1.
故答案为:?x∈R,x≥-1.

点评 本题考查命题的否定,注意全称命题和特称命题的转换,考查变换能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.幂函数f(x)=(m2-2m+1)x2m-1在(0,+∞)上为增函数,则实数m的值为(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a•\overrightarrow b=1$,则$|{\overrightarrow a-2\overrightarrow b}|$=(  )
A.$2\sqrt{3}$B.12C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量|$\overrightarrow{a}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\frac{3\sqrt{6}}{2}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若$\overrightarrow{PA}$=$\overrightarrow a$,$\overrightarrow{PB}$=$\overrightarrow b$,$\overrightarrow{PC}$=$\overrightarrow c$,则$\overrightarrow{BE}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$B.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{3}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直角梯形OABC中,∠COA=∠OAB=$\frac{π}{2}$,OC=2,OA=AB=1,SO⊥平面OABC,且SO=1,点M为SC的中点.
(Ⅰ)求证:BM∥平面SOA;
(Ⅱ)求二面角O-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:
①若m∥n,n?α,则m∥α 
②若m⊥α,m∥β,则α⊥β
③α∥β,α∥γ,则β∥γ      
④若α⊥β,m∥α,则m⊥β
其中正确命题的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若抛物线y2=2px(p>0)上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为α=60°,β=45°,如果此时气球的高度h是10米,则河流的宽度BC=10-$\frac{10\sqrt{3}}{3}$米.

查看答案和解析>>

同步练习册答案