精英家教网 > 高中数学 > 题目详情

已知圆,直线经过点
(Ⅰ)求以线段CD为直径的圆E的方程;
(Ⅱ)若直线与圆C相交于两点,且为等腰直角三角形,求直线的方程.

(1)
(2)

解析试题分析:解:(1)将圆C的方程配方得标准方程为
则此圆的圆心为C(0 , 4),半径为2.   2分
所以CD的中点,,  4分
,所以圆E的方程为;  5分
(2) 设直线的方程为:  6分
易知,又由为等腰直角三角形,得,
所以圆心C到直线的距离.    8分
解得, 
所求直线的方程为:  10分
考点:圆的方程,直线的方程
点评:主要是考查了直线的方程与圆的方程的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1)求直线关于直线,对称的直线方程;
(2)已知实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆与圆相交于A、B两点.
(1)求过A、B两点的直线方程.
(2)求过A、B两点且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是圆上的点
(1)求的取值范围;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点的圆C与直线相切于点.
(1)求圆C的方程;
(2)已知点的坐标为,设分别是直线和圆上的动点,求的最小值.
(3)在圆C上是否存在两点关于直线对称,且以为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆及点
(1)在圆上,求线段的长及直线的斜率;
(2)若为圆上任一点,求的最大值和最小值;
(3)若实数满足,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点。
(1)当经过圆心C时,求直线的方程;
(2)当弦AB的长为时,写出直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为的直角三角形.过1作直线l交椭圆于PQ两点.
(1) 求该椭圆的标准方程;
(2) 若,求直线l的方程;
(3) 设直线l与圆Ox2+y2=8相交于MN两点,令|MN|的长度为t,若t,求△B2PQ的面积的取值范围.

查看答案和解析>>

同步练习册答案