精英家教网 > 高中数学 > 题目详情

已知圆与圆相交于A、B两点.
(1)求过A、B两点的直线方程.
(2)求过A、B两点且圆心在直线上的圆的方程.

(1);(2)

解析试题分析:(1)两个圆的方程相减,得直线,因为圆和圆的公共点为,所以点的坐标满足方程,而两点只能确定一条直线,所以过两点的直线方程为,如果已知两个圆相切,那么相减得到的是公切线方程;(2)利用过两圆交点的直线系方程可设为,整理为圆的一般方程,进而求出圆心,再把圆心坐标代入直线中,求,或者该题可以先求两点的坐标,在利用到圆心的距离相等列方程,求试题解析:(I)联立,两式相减并整理得:
∴过A、B两点的直线方程为                                    5分
(II)依题意:设所求圆的方程为        6分
其圆心坐标为   ,因为圆心在直线上,所以,解得
∴所求圆的方程为:                                12分
考点:1、直线的方程;2、圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点,直线(为常数).
(1)若点到直线的距离相等,求实数的值;
(2)对于上任意一点恒为锐角,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线经过点
(Ⅰ)求以线段CD为直径的圆E的方程;
(Ⅱ)若直线与圆C相交于两点,且为等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若直线的方程为,判断直线与圆的位置关系;(2)若直线过定点,且与圆相切,求的方程.

查看答案和解析>>

同步练习册答案