有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.
解析试题分析:本题解法有4种,①由直线与圆相切于点A可设方程,再过点B可求出,即求出圆的方程.②可以设圆的标准方程,由圆心和切点连线与切线垂直且圆过A,B两点可找到三个关系式求出从而得到圆的方程.③可设所求圆的方程的一般式,写出圆心坐标,由圆心和切点连线与切线垂直且圆过A,B两点可找到三个关系式求出从而得到圆的方程.④设出圆心坐标,由几何意义可以由圆心和切点连线与切线垂直先求出直线CA方程,再由A,B坐标求出直线AB的方程,由AB的垂直平分线与CA相交于点C,再CA的长度即为圆的半径从而得到圆的方程.
试题解析:
法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.
法二:设圆的方程为,
则圆心为,由,得
解得
所以所求圆的方程为.
法三:设圆的方程为,由,,在圆上,得
解理
所以所求圆的方程为.
法四:设圆心为C,则,又设AC与圆的另一交点为P,则CA的方程为,
即.
又因为,
所以,所以直线BP的方程为.
解方程组得所以.
所以圆心为AP的中点,半径为,
所以所求圆的方程为.
考点:圆的标准方程, 直线与圆相切.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆:和直线:,为上一动点,,为圆与轴的两个交点,直线,与圆的另一个交点分别为.
(1)若点的坐标为(4,2),求直线方程;
(2)求证直线过定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆:.
(Ⅰ)若圆与轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com