精英家教网 > 高中数学 > 题目详情

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)过作圆的弦,求最小弦长?

(1);(2)

解析试题分析:(1)根据直线与圆相交,得到圆心到直线的距离小于半径,即可求出的取值范围;(2)当圆心与连线为弦心距时,弦长最小,利用两点间的距离公式求出弦心距,由垂径定理及勾股定理求出最小弦长即可.
试题解析:(1)圆心到直线的距离,解得
(2)当圆心与连线为弦心距时,弦长最小,
∵圆心的距离为,半径
根据题意得:最小弦长为
考点:直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线为参数)与圆为参数)相切,切点在第一象限,则实数的值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为

(1)若,求点的坐标;
(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;
(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyxmm∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点Py轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线Cx2=4y是否相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:以点C(t,)(t∈R,t≠0)为圆心的圆与轴交于点O,A,与y轴交于点O,B,其中O为原点
(1)求证:△OAB的面积为定值;
(2)设直线y=–2x+4与圆C交于点M,N,若OM=ON,求圆C的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.

查看答案和解析>>

同步练习册答案