精英家教网 > 高中数学 > 题目详情

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

(Ⅰ),(Ⅱ)(Ⅲ)

解析试题分析:(Ⅰ)求过定点直线方程,要注意斜率不存在情况是否满足题意,本题可分类讨论,也可从设法上考虑斜率不存在,即设直线的方程为:,再利用圆心到直线距离等于半径即可求出直线方程,(Ⅱ)求圆中弦中点,一可利用几何条件,即圆心与弦中点连线与直线垂直,从而弦中点就为直线与连线的交点,二可利用韦达定理,根据中点坐标公式求解,(Ⅲ)以为直径的圆经过原点,这一条件如何用,是解题的关键 一是利用向量垂直,二是利用圆系方程
试题解析:(Ⅰ)根据题意,设直线的方程为:
联立直线与圆的方程并整理得:     2分
所以
从而,直线的方程为:                 4分
(Ⅱ)根据题意,设直线的方程为:
代入圆方程得:,显然,           6分

所以点的坐标为                  8分
(Ⅲ)假设存在这样的直线
联立圆的方程并整理得:
                    9分

所以                           10分
因为以为直径的圆经过原点,所以
均满足
所以直线的方程为:。                  13分
(Ⅲ)法二:可以设圆系方程
则圆心坐标,圆心在直线上,且该圆过原点。易得b的值。
考点:直线与圆相切,弦中点,圆方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).
(1)求直线l1、l2的方程;
(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.
①当a=4,b=-2时,求圆C的方程;
②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)过作圆的弦,求最小弦长?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过坐标原点和点,且圆心在轴上.
(1)求圆的方程;
(2)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求半径为,圆心在直线上,且被直线所截弦的长为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求直线关于直线,对称的直线方程;
(2)已知实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆与圆相交于A、B两点.
(1)求过A、B两点的直线方程.
(2)求过A、B两点且圆心在直线上的圆的方程.

查看答案和解析>>

同步练习册答案