精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。.

(1);(2)

解析试题分析:(1)由题设点,又也在直线上,点满足直线的方程,从而求出圆的方程,可将切线方程可设为,则圆心到切线的距离等于圆的半径,即可求出切线的方程;(2)设点,又点在圆上,
点为的交点,
若存在这样的点,则有交点,
即圆心之间的距离满足:,从而求出的取值范围.
试题解析:(1)由题设点,又也在直线上,
,由题,过A点切线方程可设为
,则,解得:
又当斜率不存在时,也与圆相切,∴所求切线为
 
(2)设点,又点在圆上,
点为的交点,
若存在这样的点,则有交点,
即圆心之间的距离满足:

解得:
考点:本题主要考查了圆的标准方程,直线与圆的位置关系,圆与圆的位置关系,以及两点间的距离公式,解题的关键是抓住直线与圆,圆与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆

(Ⅰ)若圆轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在点, 点,求;
(1)过点的圆的切线方程;
(2)点是坐标原点,连结,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆与圆相交于A、B两点.
(1)求过A、B两点的直线方程.
(2)求过A、B两点且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(Ⅰ)若相切,求的值;
(Ⅱ)是否存在值,使得相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案