精英家教网 > 高中数学 > 题目详情

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

(1);(2)详见解析

解析试题分析:(1)由已知得,又,则根据斜率的关系,且过点(2,0),可求,分别求直线与的交点的坐标,进而可求以为直径的圆的方程;(2)
,由直线的方程,分别求与的交点,得,利用勾股定理求以为直径的圆截轴的弦长为,长度为定值,故圆过定点.(1、该题还可以根据两直线的垂直关系设直线方程,斜率分别为,方法如上;2、对于探索型和开放型题目,大胆的猜想和必要的论证是解决问题非常好的方法).
试题解析:建立如图所示的直角坐标系,⊙O的方程为,直线L的方程为.
(1)∵∠PAB=30°,∴点P的坐标为,∴,将x=4代入,得,∴MN的中点坐标为(4,0),MN=,∴以MN为直径的圆的方程为,同理,当点P在x轴下方时,所求圆的方程仍是
(2)设点P的坐标为,∴),∴,∵,将x=4代入,得,∴,MN=,MN的中点坐标为
以MN为直径的圆截x轴的线段长度为
为定值。∴⊙必过⊙O内定点.
考点:1、直线和圆的方程;2、直线被圆所截的弦长计算方法;3、直线和圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过两点,且在两坐标轴上的四个截距之和为2.
(1)求圆的方程;
(2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,锐角的内心为,过点作直线的垂线,垂足为,点为内切圆与边的切点.

(Ⅰ)求证:四点共圆;
(Ⅱ)若,求的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆关于直线对称,圆心在第二象限,半径为.
(1)求圆的方程;
(2)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,求直线的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线L:x-2y-5=0与圆C:x2+y2=50.求:
(1)交点A,B的坐标;(2)△AOB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上。
(1)、求圆M的方程
(2)、设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值。

查看答案和解析>>

同步练习册答案