精英家教网 > 高中数学 > 题目详情

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

(1)见解析(2)(x-2)2+(y-1)2=5(3)2,坐标为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)过点P作两条相异直线分别与圆C相交于A、B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求半径为,圆心在直线上,且被直线所截弦的长为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于的方程:R.
(Ⅰ)若方程表示圆,求的取值范围;
(Ⅱ)若圆与直线相交于两点,且=,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

查看答案和解析>>

同步练习册答案