精英家教网 > 高中数学 > 题目详情

如图,锐角的内心为,过点作直线的垂线,垂足为,点为内切圆与边的切点.

(Ⅰ)求证:四点共圆;
(Ⅱ)若,求的度数.

(Ⅰ)见解析;(Ⅱ)∠DEF=.

解析试题分析:(Ⅰ)根据作直线的垂线,垂足为得到,由点为内切圆与边的切点可得,根据圆内接四边形的性质与判定可得四点共圆;(Ⅱ)根据(Ⅰ)的结论,可知 =∠DAF,然后根据内心的性质求出 ,然后再直角三角形ADF中,求出 ,即可得出结果.
试题解析:(Ⅰ)由圆D与边AC相切于点E,得
,得,∴四点共圆.
(Ⅱ)由(Ⅰ)知四点共圆,得∠DEF=∠DAF,

结合BF⊥AF,得∠DEF=∠DAF=∠ADF=,∴.
得∠DEF=.

考点:1.圆内接四边形的性质与判定;2.三角形内心的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在点, 点,求;
(1)过点的圆的切线方程;
(2)点是坐标原点,连结,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知半径为的⊙轴交于两点,为⊙的切线,切点为,且在第一象限,圆心的坐标为,二次函数的图象经过两点.

(1)求二次函数的解析式;
(2)求切线的函数解析式;
(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线与圆相交于两点,且A点在第一象限.
(1)求
(2)设()是圆上的一个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于.问是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过点,且与直线相切于点
(1)求圆的方程;
(2)求圆关于直线对称的圆的方程.

查看答案和解析>>

同步练习册答案