精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上。
(1)、求圆M的方程
(2)、设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值。

(1) ;(2)

解析试题分析:(1)设圆M的方程为
依题意

                                                       (3分)
解得:                                              (4分)
所以圆M的方程为                               (5分)
(2)因为PA为圆的切线,所以PA⊥AM
S四边形PAMB=2S△APM=              (7分)
当PM垂直于直线时,                         (9分)
所以四边形PAMBR的面积的最小值为                                 (10分)
考点:本题考查了圆方程的求法及圆的性质
点评:圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

内有一点为过点且倾斜角为的弦,
(1)当=时,求的长;
(2)当弦被点平分时,写出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(Ⅰ)若相切,求的值;
(Ⅱ)是否存在值,使得相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过点,且与直线相切于点
(1)求圆的方程;
(2)求圆关于直线对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,过点作直线与圆交于两点。

(1)若坐标原点O到直线AB的距离为,求直线AB的方程;
(2)当△的面积最大时,求直线AB的斜率;
(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(1)求证:直线与圆恒相交;
(2)当时,过圆上点作圆的切线交直线点,为圆上的动点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,曲线的参数方程是
是参数).
(1)写出曲线的直角坐标方程和曲线的普通方程;
(2)求的取值范围,使得没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知圆的圆心轴上,半径为1,直线,被圆所截的弦长为,且圆心在直线的下方.
(I)求圆的方程;
(II)设,若圆的内切圆,求△的面积
的最大值和最小值.

查看答案和解析>>

同步练习册答案