精英家教网 > 高中数学 > 题目详情

已知圆经过两点,且在两坐标轴上的四个截距之和为2.
(1)求圆的方程;
(2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.

(1);(2).

解析试题分析:(1)设所求圆的一般方程为,再令,分别求出圆在轴、轴上的截距之和,再有已知圆两坐标轴上的四个截距之和为2.得出的关系式,由于两点在圆上,联立方程组,解方程组求出系数,从而求得圆的方程;(2)考查圆的最短弦,实际上当直线过定点且与过此点的圆的半径垂直时,被圆截得的弦长最短,求出直线的斜率,再由直线方程的点斜式求出方程.
试题解析:(1)设圆的方程为
,得,则圆在轴上的截距之和为
,得,则圆在轴上的截距之和为
由题意有,即,又两点在圆上,
,解得,故所求圆的方程为.
(2)由(1)知,圆的方程为,圆心为
当直线过定点且与过此点的圆的半径垂直时,被圆截得的弦长最短,
此时
于是直线的方程为,即.
考点:圆的方程,性质,直线与圆的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以点C为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于的方程:R.
(Ⅰ)若方程表示圆,求的取值范围;
(Ⅱ)若圆与直线相交于两点,且=,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆

(Ⅰ)若圆轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在点, 点,求;
(1)过点的圆的切线方程;
(2)点是坐标原点,连结,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

内有一点为过点且倾斜角为的弦,
(1)当=时,求的长;
(2)当弦被点平分时,写出直线的方程.

查看答案和解析>>

同步练习册答案