已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.
(1) (2) (3)
解析试题分析:(1)把方程化为圆的标准方程为,故有,由此解得的范围.
(2)由直线方程与圆的方程联立消,把直线代入圆的方程化简到关于的二次方程,设.∵,故 ①,利用根与系数的关系可得,,代入①求得的值.
(3)由(2)可以求出两点的坐标,由两点间距离公式可以求出线段的长度,再由中点公式可以求出圆心.可以得到以直径的圆的方程.当然也可以圆的直径式直接写出圆的方程.
试题解析:
(1)方程,可化为
,
∵此方程表示圆,
∴,即.
(2)
消去得,
化简得.
设,则
由得
即,
∴.
将两式代入上式得
,
解之得.
(3)由,代入,
化简整理得,解得.
∴.
∴,
∴的中点C的坐标为.
又,
∴所求圆的半径为.
∴所求圆的方程为.
考点:圆的一般方程;二元二次方程表示圆的条件;圆的标准方程;直线与圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且。
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆:和直线:,为上一动点,,为圆与轴的两个交点,直线,与圆的另一个交点分别为.
(1)若点的坐标为(4,2),求直线方程;
(2)求证直线过定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆:.
(Ⅰ)若圆与轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com