【题目】如图所示,
是一块边长为7米的正方形铁皮,其中
是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮
,其中P是
上一点.设
,长方形
的面积为S平方米.
![]()
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.
科目:高中数学 来源: 题型:
【题目】某电视台为宣传本市,随机对本市内
岁的人群抽取了
人,回答问题“本市内著名旅游景点有哪些” ,统计结果如图表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |
![]()
(1)分别求出
的值;
(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;
(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为
.
(1)求动点M的轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交曲线C于不同于N的两点A,B,直线NA,NB的斜率分别为k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
,其中
为参数,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为
,直线l的极坐标方程为
.
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若Q是曲线C上的动点,M为线段PQ的中点,求点M到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i(i=1,2,…,10)个人的水桶需Ti分钟,假设Ti各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( )
A. 从Ti中最大的开始,按由大到小的顺序排队
B. 从Ti中最小的开始,按由小到大的顺序排队
C. 从靠近Ti平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队
D. 任意顺序排队接水的总时间都不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的两个焦点分别为F1,F2,离心率为
,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出
人,并将这
人按年龄分组:第1组
,第2组
,第3组
,第4 组
,第5组
,得到的频率分布直方图如图所示
![]()
(1) 求
的值
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取
人,再从这
人中随机抽取
人进行问卷调查,求在第1组已被抽到
人的前提下,第3组被抽到
人的概率;
(3)若从所有参与调查的人中任意选出
人,记关注“生态文明”的人数为
,求
的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)求圆
半径的最小值;
(2)当圆心
在抛物线上运动时,
是否为一定值?请证明你的结论;
(3)当圆心
在抛物线上运动时,记
,
,求
的最大值,并求此时圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com