精英家教网 > 高中数学 > 题目详情
已知平面向量
a
b
满足|
a
|=1,|
b
|=2,
a
b
的夹角为
π
3
,以
a
b
为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为
 
分析:
a
b
为邻边作平行四边形,则此平行四边形的两条对角线分别为
a
+
b
a
-
b
,分别求出他们的模,然后进行比较,即可得到结论.
解答:解:∵|
a
|=1
|
b
|=2
a
b
的夹角为
π
3

a
2
=1
b
2
=4
a
b
=1

∴|
a
+
b
|=
1+4+2
=
7

∴|
a
-
b
|=
1+4-2
=
3

 
3
7

故以
a
b
为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为
3

故答案为:
3
点评:此题是个中档题.本题考查向量的运算法则:平行四边形法则、向量的数量积的定义式以及向量的模计算公式.体现了数形结合的思想,同时也考查了学生应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)已知平面向量
a
b
满足条件
a
+
b
=(0,1),
a
-
b
=(-1,2),则
a
b
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足
|a|
=3,
|b|
=3,
|b|
=2,
a
b
的夹角为60°,若(
a
-m
b
)⊥
a
,则实数m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=3,|
b
|=2,
a
b
的夹角为60°,若(
a
-m
b
)丄
a
,则实数m的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足:
a
+
b
=(1,2)
a
-
b
=(5,-2)
,则向量
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足:
a
=(-1,2)
b
a
,且|
b
|=2
5
,则向量
b
的坐标为
(4,2)或(-4,-2)
(4,2)或(-4,-2)

查看答案和解析>>

同步练习册答案