精英家教网 > 高中数学 > 题目详情
4.某个命题与正整数有关,若当n=k(k∈N*)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=9时该命题不成立,那么可推得(  )
A.当n=10时,该命题不成立B.当n=10时,该命题成立
C.当n=8时,该命题成立D.当n=8时,该命题不成立

分析 利用逆否命题的真假判断原命题的真假,利用数学归纳法判断即可.

解答 解:因为原命题与逆否命题的真假性相同,所以若当n=k(k∈N*)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=9时该命题不成立,那么可推得:当n=8时,该命题不成立.
故选:D.

点评 本题考查数学归纳法的应用,原命题与逆否命题的等价性的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.根据如表样本数据
x3456
y2.5t44.5
得到回归方程y=0.7x+0.35,则t=(  )
A.2.6B.2.8C.2.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.
(1)将总运费y表示为x的函数;
(2)如何选点M才使总运费最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函数f(x)的最小正周期和其图象对称中心的坐标;
(2)求函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=19
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知曲线y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$处的切线为l,直线l在y轴上上的截距为bn,则数列{bn}的通项公式为bn=(2-n)($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2lnx在x=x0处的切线与直线x+3y+2=0垂直,则x0=(  )
A.$-\frac{1}{2}$或2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.复数z满足(3-4i)z=5+10i,则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.统计表明:某型号的汽车在匀速行驶中每小时的耗油量y(升)关于速度x(千米/时)的函数解析式可表示为y=$\frac{{x}^{2}}{800}$-$\frac{3}{20}$x+8(0<x≤120),已知甲、乙两地相距100千米.
(1)当汽车以40千米/时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

同步练习册答案