精英家教网 > 高中数学 > 题目详情
11.若实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$则z=x+3y的最大值等于12.

分析 由约束条件作出可行域,利用数形结合得到最优解,
联立方程组求出最优解的坐标,代入目标函数求得最大值.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$,
作出可行域如图,

联立方程组$\left\{\begin{array}{l}{y=x}\\{2x+y-9=0}\end{array}\right.$,
解得:A(3,3),
化目标函数z=x+3y为y=-$\frac{1}{3}$+$\frac{1}{3}$,
由图可知,当直线y=-$\frac{1}{3}$+$\frac{1}{3}$过A时,直线在y轴上的截距最大,对应z最大;
此时z=3+3×3=12.
故答案为:12.

点评 本题考查了简单的线性规划与数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为4$\sqrt{3}$,且P为圆C上任意一点.
(1)求|PA|的最大值与最小值;
(2)圆C与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.l1、l2是空间两条直线,α是平面,以下结论正确的是(  )
A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥α
C.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.
(1)试判断函数${f_1}(x)={x^2}$与${f_2}(x)={x^{\frac{1}{2}}}$是否是“L函数”;
(2)若函数g(x)=3x-1+a(3-x-1)为“L函数”,求实数a的取值范围;
(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k-1,2k)(k∈N*),都有$f(x)-f(\frac{1}{x})>$$\frac{x}{2}-\frac{2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为$\frac{2}{3}$和$\frac{3}{5}$.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为$\frac{13}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若适合不等式|x2-4x+k|+|x-3|≤5的x的最大值为3,则实数k的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{1}{a}$+$\frac{3}{b}$的最小值为(  )
A.2+$\sqrt{3}$B.5+2$\sqrt{6}$C.8+$\sqrt{15}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在(0,∞)上的函数f(x)的导函数f'(x)是连续不断的,若方程f'(x)=0无解,且?x∈(0,+∞),f[f(x)-log2015x]=2017,设a=f(20.5),b=f(log43),c=f(logπ3),则a,b,c的大小关系是a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.上饶高铁站B1进站口有3个闸机检票通道口,若某一家庭有3个人检票进站,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这个家庭3个人的不同进站方式有(  )种.
A.24B.36C.42D.60

查看答案和解析>>

同步练习册答案