精英家教网 > 高中数学 > 题目详情
1.上饶高铁站B1进站口有3个闸机检票通道口,若某一家庭有3个人检票进站,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这个家庭3个人的不同进站方式有(  )种.
A.24B.36C.42D.60

分析 根据题意,按3人选择通道口的数目分3种情况讨论,①、3人选择同一个通道口进站,②、3人选择2个通道口进站,③、3人选择3个通道口进站,分别求出每一种情况的进站方式数目,由分类计数原理计算可得答案.

解答 解:根据题意,分3种情况讨论:
①、3人选择同一个通道口进站,通道口有3种选择,3个人的前后顺序有A33种情况,
则此时有3×A33=18种进站方式,
②、3人选择2个通道口进站,
先将3人分成2组,有C32=3种分组方法,
在3个通道口中任选2个,有A32=6种情况,考虑2人组的前后顺序,有A22=2种情况,
此时有3×6×2=36种进站方式,
③、3人选择3个通道口进站,
将3人全排列,对应3个通道口即可,有A33=6种进站方式,
则这个家庭3个人的不同进站方式有18+36+6=60种;
故选:D.

点评 本题考查排列、组合的综合应用,注意要结合题意,按3人选择通道口的数目进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$则z=x+3y的最大值等于12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)求证:g(x)≥x+1(x∈R);
(2)设h(x)=f(x+1)+g(x),若x≥0时,h(x)≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={1,2,3,4},B={x|x≤2},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且n+1=1+Sn对一切正整数n恒成立.
(1)试求当a1为何值时,数列{an}是等比数列,并求出它的通项公式;
(2)在(1)的条件下,当n为何值时,数列$\left\{{lg\frac{400}{a_n}}\right\}$的前n项和Tn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为(  )
A.5B.$\sqrt{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{2-x},x<2}\\{\frac{3}{4}{x}^{2}-3x+4,x≥2}\end{array}\right.$,若不等式a≤f(x)≤b的解集恰好为[a,b],则b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-(a+2)x+lnx+b(a>0).
(1)若函数f(x)在x=1处的切线方程为y=x-1,求实数a,b的值;
(2)在(1)的b下,当a≥2时,讨论函数f(x)的零点的个数.

查看答案和解析>>

同步练习册答案