精英家教网 > 高中数学 > 题目详情
16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

分析 等式变形为x2${e}^{\frac{y}{x}}$=2ay2成立,构造函数f(t)=$\frac{{e}^{t}}{{t}^{2}}$,求出导函数f'(t)=$\frac{{e}^{t}({t}^{2}-2t)}{{t}^{4}}$,利用导函数求出函数的最值,得出a的范围.

解答 解:${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,
∴x2${e}^{\frac{y}{x}}$=2ay2成立,
∴$\frac{{x}^{2}}{{y}^{2}}$${e}^{\frac{y}{x}}$=2a,
令t=$\frac{y}{x}$,
∴2a=$\frac{{e}^{t}}{{t}^{2}}$,
令f(t)=$\frac{{e}^{t}}{{t}^{2}}$,f'(t)=$\frac{{e}^{t}({t}^{2}-2t)}{{t}^{4}}$,
当t>2时,f'(t)>0,f(t)递增,当t<2时,f'(t)<0,f(t)递减,
∴f(t)的最小值为f(2)=$\frac{{e}^{2}}{4}$,
∴2a≥$\frac{{e}^{2}}{4}$,
∴a≥$\frac{{e}^{2}}{8}$
故选A.

点评 本题考查了对问题的转化和导函数的应用.属于基本技巧,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为$\frac{2}{3}$和$\frac{3}{5}$.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为$\frac{13}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设$\overrightarrow a$,$\overrightarrow b$是两个向量,则“$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$”是“$\overrightarrow a•\overrightarrow b>0$”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,则z=x2+y2的最小值是(  )
A.2B.$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线x+ay+2=0与圆x2+y2+2x-2y+1=0有公共点,则实数a的取值范围是(  )
A.a>0B.a≥0C.a≤0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.上饶高铁站B1进站口有3个闸机检票通道口,若某一家庭有3个人检票进站,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这个家庭3个人的不同进站方式有(  )种.
A.24B.36C.42D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD为直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD为底边的等腰直角三角形,且PA⊥CD.
(1)证明:PC⊥平面PAD;
(2)求直线AB与平面PBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{3+i}{3-i}$=(  )
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案