精英家教网 > 高中数学 > 题目详情
8.如图,已知四边形ABCD为直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD为底边的等腰直角三角形,且PA⊥CD.
(1)证明:PC⊥平面PAD;
(2)求直线AB与平面PBC所成的角的大小.

分析 (1)证明PA⊥PC,通过计算求解证明PC⊥PD,然后证明PC⊥平面PAD.
(2)建系 求出相关点的坐标,求出平面PBC的法向量,设直线AB与平面PBC所成的角是θ利用空间向量的数量积求解直线AB与平面PBC所成的角即可.

解答 (1)证明:由已知得:PA⊥PD,PA⊥CD,所以PA⊥平面PCD,即PA⊥PC
在直角梯形ABCD中,AB=1,$AD=2BC=\sqrt{2}$$AC=CD=\frac{{\sqrt{6}}}{2}$,由△PAD是以AD为底边的等腰直角三角形得:AP=PD=1
由PC2+AP2=AC2,得$PC=\frac{{\sqrt{2}}}{2}$,
可算得:PC2+PD2=CD2
所以:PC⊥PD,即PC⊥平面PAD.
(2)如图建系,可得:

A(1,0,0),$C(0,\frac{{\sqrt{2}}}{2},0)$,D(0,0,1),P(0,0,0)$\overrightarrow{CB}=\frac{1}{2}(1,0,-1)$$\overrightarrow{PC}=(0,\frac{{\sqrt{2}}}{2},0)$,$\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=(-1,\frac{{\sqrt{2}}}{2},0)+\frac{1}{2}(1,0,-1)=(-\frac{1}{2},\frac{{\sqrt{2}}}{2},-\frac{1}{2})$,
设平面PBC的法向量为$\overrightarrow n=(x,y,z)$,则有$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{CB}=\frac{1}{2}(x-z)=0\\ \overrightarrow n•\overrightarrow{PC}=\frac{{\sqrt{2}}}{2}y=0\end{array}\right.$,令x=1得:$\overrightarrow n=(1,0,1)$,
设直线AB与平面PBC所成的角是θ,∴$sinθ=|cos<\overrightarrow n,\overrightarrow{AB}>|=|\frac{{\overrightarrow n•\overrightarrow{AB}}}{{|\overrightarrow n|•|\overrightarrow{AB}|}}|=|\frac{-1}{{\sqrt{2}}}|=\frac{{\sqrt{2}}}{2}$
所以直线AB与平面PBC所成的角是$\frac{π}{4}$.

点评 本题考查直线与平面所成角的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,等腰Rt△AOB,OA=OB=2,点C是OB的中点,△AOB绕BO所在的边逆时针旋转一周.
(1)求△ABC旋转一周所得旋转体的体积V和表面积S;
(2)设OA逆时针旋转至OD,旋转角为θ,且满足AC⊥BD,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y,z满足$\left\{\begin{array}{l}xy+2z=1\\{x^2}+{y^2}+{z^2}=5\end{array}\right.$则xyz的最小值为$9\sqrt{11}-32$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,O是△ABC外接圆的圆心,若$\sqrt{2}αcosB=\sqrt{2}c-b$,且$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,则m的值是(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为(  )
A.5B.$\sqrt{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin$\frac{1}{2}$x的图象向左平移φ(φ>0)个单位得到函数g(x)=cos$\frac{1}{2}$x的图象,则φ的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是(  )
A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是(  )
A.4$\sqrt{3}$B.3$\sqrt{13}$C.$\sqrt{14}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案