精英家教网 > 高中数学 > 题目详情
3.在△ABC中,内角A,B,C的对边分别为a,b,c,O是△ABC外接圆的圆心,若$\sqrt{2}αcosB=\sqrt{2}c-b$,且$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,则m的值是(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

分析 由$\sqrt{2}αcosB=\sqrt{2}c-b$,得$\sqrt{2}cosAsinB-sinB=0$,即cosA=$\frac{\sqrt{2}}{2}$,得A=$\frac{π}{4}$.
由$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,得$\frac{cosB}{snC}{\overrightarrow{AB}}^{2}+\frac{cosC}{sinB}\overrightarrow{AC}•\overrightarrow{AB}=m\overrightarrow{AO}•\overrightarrow{AB}$,
⇒$cosB+cosAcosC=\frac{1}{2}msinC$
则m=2×$\frac{cosB+cosAcosC}{sinC}$=2×$\frac{-cos(A+C)+cosAcosC}{sinC}$=2×$\frac{sinAsinC}{sinC}=2sinA$.

解答 解:∵$\sqrt{2}αcosB=\sqrt{2}c-b$,∴$\sqrt{2}sinAcosB=\sqrt{2}sin(A+B)-sinB$
⇒$\sqrt{2}sinAcosB=\sqrt{2}sinAcosB+\sqrt{2}cosAsinB-sinB\\;\\;\\;\$
⇒$\sqrt{2}cosAsinB-sinB=0$,∴cosA=$\frac{\sqrt{2}}{2}$,得A=$\frac{π}{4}$.
∵O是△ABC外接圆的圆心,∴$\overrightarrow{AO}•\overrightarrow{AB}=\frac{1}{2}{\overrightarrow{AB}}^{2}=\frac{1}{2}{c}^{2}$
由$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,得$\frac{cosB}{snC}{\overrightarrow{AB}}^{2}+\frac{cosC}{sinB}\overrightarrow{AC}•\overrightarrow{AB}=m\overrightarrow{AO}•\overrightarrow{AB}$,
⇒$\frac{cosB}{sinC}{c}^{2}+\frac{cosC}{sinB}bccosA=m×\frac{1}{2}{c}^{2}$⇒$\frac{cosB}{sinC}c+\frac{cosC}{sinB}bcosA=\frac{1}{2}mc$
⇒$cosB+cosAcosC=\frac{1}{2}msinC$
∴m=2×$\frac{cosB+cosAcosC}{sinC}$=2×$\frac{-cos(A+C)+cosAcosC}{sinC}$
=2×$\frac{sinAsinC}{sinC}=2sinA$=$\sqrt{2}$.
故选:C

点评 本题综合考查了三角形的外接圆的性质、向量的三角形法则、数量积运算、正弦定理、三角形的内角和定理、两角和的圆心公式等基础知识与基本技能,考查了数形结合的能力、推理能力、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设P,Q分别为直线$\left\{\begin{array}{l}x=t\\ y=6-2t\end{array}\right.$(t为参数)和曲线C:$\left\{\begin{array}{l}x=1+\sqrt{5}cosθ\\ y=-2+\sqrt{5}sinθ\end{array}\right.$(θ为参数)的点,则|PQ|的最小值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C:(x-a)2+(y-b)2=2,圆心C在曲线y=$\frac{1}{x}$(x∈[1,2])上.则ab=1,直线l:x+2y=0被圆C所截得的长度的取值范围是[$\frac{2\sqrt{5}}{5}$,$\frac{2\sqrt{10}}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线x+ay+2=0与圆x2+y2+2x-2y+1=0有公共点,则实数a的取值范围是(  )
A.a>0B.a≥0C.a≤0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在一个半球中,挖出一个体积最大的长方体,挖后几何体的俯视图如图,则下列正视图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD为直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD为底边的等腰直角三角形,且PA⊥CD.
(1)证明:PC⊥平面PAD;
(2)求直线AB与平面PBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为(  )
A.五寸B.二尺五寸C.三尺五寸D.一丈二尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按图[0.0.5),[0.5,1),…,[4,4.5]分9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率,现从全校高一年级随机抽取20名学生,其中k名学生“阅读时间”在[1,2.5]小时内的概率为P(X=k),其中k=0,1,2,…20.当P(X=k)取最大时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁UA)∩B=(  )
A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]

查看答案和解析>>

同步练习册答案