精英家教网 > 高中数学 > 题目详情
11.已知直线x+ay+2=0与圆x2+y2+2x-2y+1=0有公共点,则实数a的取值范围是(  )
A.a>0B.a≥0C.a≤0D.a<0

分析 利用圆心与直线的距离等于小于圆的半径,然后求解a的范围.

解答 解:圆x2+y2+2x-2y+1=0,即(x+1)2+(y-1)2=1的圆心(-1,1),半径为1,
∵直线x+ay+2=0与圆x2+y2+2x-2y+1=0有公共点,
∴$\frac{|-1+a+2|}{\sqrt{1+{a}^{2}}}$≤1
∴a≤0,
故选C.

点评 本题考查直线与圆的位置关系,点到直线的距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设i为虚数单位,复数$z=\frac{1-2i}{2+i}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用ξ表示所选女“优秀警员”的人数,试求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y,z满足$\left\{\begin{array}{l}xy+2z=1\\{x^2}+{y^2}+{z^2}=5\end{array}\right.$则xyz的最小值为$9\sqrt{11}-32$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=Asin(ωx+ϕ)$(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,则其在区间$[\frac{π}{3},2π]$上的单调递减区间是(  )
A.$[\frac{π}{3},π]$和$[\frac{11π}{6},2π]$B.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{4π}{3},\frac{11π}{6}]$
C.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{11π}{6},2π]$D.$[\frac{π}{3},π]$和$[\frac{4π}{3},\frac{11π}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,O是△ABC外接圆的圆心,若$\sqrt{2}αcosB=\sqrt{2}c-b$,且$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,则m的值是(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin$\frac{1}{2}$x的图象向左平移φ(φ>0)个单位得到函数g(x)=cos$\frac{1}{2}$x的图象,则φ的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

同步练习册答案