精英家教网 > 高中数学 > 题目详情
17.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是(  )
A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

分析 设晷影长为等差数列{an},公差为d,a1=135,a13=15,利用等差数列的通项公式即可得出.

解答 解:设晷影长为等差数列{an},公差为d,a1=135,a13=15,
则135+12d=15,解得d=-10.
∴a14=135-10×13=5
∴《易经》中所记录的惊蛰的晷影长是5寸.
故选:A.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设$\overrightarrow a$,$\overrightarrow b$是两个向量,则“$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$”是“$\overrightarrow a•\overrightarrow b>0$”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD为直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD为底边的等腰直角三角形,且PA⊥CD.
(1)证明:PC⊥平面PAD;
(2)求直线AB与平面PBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{3+i}{3-i}$=(  )
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按图[0.0.5),[0.5,1),…,[4,4.5]分9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率,现从全校高一年级随机抽取20名学生,其中k名学生“阅读时间”在[1,2.5]小时内的概率为P(X=k),其中k=0,1,2,…20.当P(X=k)取最大时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC中,D为边AC上一点,BC=2$\sqrt{2}$,∠DBC=45°.
(Ⅰ)若CD=2$\sqrt{5}$,求△BCD的面积;
(Ⅱ)若角C为锐角,AB=6$\sqrt{2}$,sinA=$\frac{\sqrt{10}}{10}$,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z1,z2在复平面内对应的点关于实轴对称,若${z_1}=\frac{1+3i}{1-i}$,则z1+z2等于(  )
A.4iB.-4iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA的中点,∠BAD=60°.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥P-EDC的体积.

查看答案和解析>>

同步练习册答案