精英家教网 > 高中数学 > 题目详情
2.已知△ABC中,D为边AC上一点,BC=2$\sqrt{2}$,∠DBC=45°.
(Ⅰ)若CD=2$\sqrt{5}$,求△BCD的面积;
(Ⅱ)若角C为锐角,AB=6$\sqrt{2}$,sinA=$\frac{\sqrt{10}}{10}$,求CD的长.

分析 (Ⅰ)根据余弦定理求出BD,再根据三角形的面积公式计算即可,
(Ⅱ)根据正弦定理即可求出sin∠BDC=sin(C+45°)=$\frac{2\sqrt{5}}{5}$,再由正弦定理可得答案.

解答 解:(Ⅰ)在△BCD中,由余弦定理:CD2=BC2+BD2-2BC•BD•cos45°,
即20=8+BD2-4BD,
解得BD=6,
所以S△BCD=$\frac{1}{2}$•BD•BC•sin45°=$\frac{1}{2}$×6×2$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=6
(Ⅱ)由正弦定理可得:$\frac{BC}{sinA}$=$\frac{AB}{sinC}$,即$\frac{2\sqrt{2}}{\frac{\sqrt{10}}{10}}$=$\frac{6\sqrt{2}}{sinC}$,
解得sinC=$\frac{3\sqrt{10}}{10}$,
由角C为锐角得cosC=$\frac{\sqrt{10}}{10}$,
∴sin∠BDC=sin(C+45°)=$\frac{2\sqrt{5}}{5}$,
在△BCD中,由正弦定理得:$\frac{CD}{sin∠DBC}$=$\frac{BC}{sin∠BDC}$,
即$\frac{CD}{\frac{\sqrt{2}}{2}}$=$\frac{2\sqrt{2}}{\frac{2\sqrt{5}}{5}}$,
解得CD=$\sqrt{5}$.

点评 本题考查了正弦定理和余弦定理和三角形的面积公式,考查了学生的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)求证:g(x)≥x+1(x∈R);
(2)设h(x)=f(x+1)+g(x),若x≥0时,h(x)≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为(  )
A.5B.$\sqrt{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{2-x},x<2}\\{\frac{3}{4}{x}^{2}-3x+4,x≥2}\end{array}\right.$,若不等式a≤f(x)≤b的解集恰好为[a,b],则b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是(  )
A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1-x)=f(1+x),且在区间[-1,0]上的最大值为3,若函数g(x)=|f(x)|-mx有唯一零点,则实数m的取值范围是(  )
A.[-2,0]B.[-2,0)∪[2,+∞)C.[-2,0)D.(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow m=(1,\sqrt{3}sin(wx+\frac{π}{6})),\overrightarrow n=(2coswx,y)(0<w<2)$,且$\overrightarrow m∥\overrightarrow n$,函数y=f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-(a+2)x+lnx+b(a>0).
(1)若函数f(x)在x=1处的切线方程为y=x-1,求实数a,b的值;
(2)在(1)的b下,当a≥2时,讨论函数f(x)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,则目标函数z=2x-y的最大值为2.

查看答案和解析>>

同步练习册答案