精英家教网 > 高中数学 > 题目详情
5.$\frac{3+i}{3-i}$=(  )
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{3+i}{3-i}$=$\frac{(3+i)^{2}}{(3-i)(3+i)}=\frac{8+6i}{10}=\frac{4}{5}+\frac{3}{5}i$,
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数$f(x)=({{x^2}-2x})lnx+({a-\frac{1}{2}}){x^2}+2({1-a})x+a$.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当a<-2时,讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为(  )
A.5B.$\sqrt{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin$\frac{1}{2}$x的图象向左平移φ(φ>0)个单位得到函数g(x)=cos$\frac{1}{2}$x的图象,则φ的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{2-x},x<2}\\{\frac{3}{4}{x}^{2}-3x+4,x≥2}\end{array}\right.$,若不等式a≤f(x)≤b的解集恰好为[a,b],则b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是(  )
A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow m=(1,\sqrt{3}sin(wx+\frac{π}{6})),\overrightarrow n=(2coswx,y)(0<w<2)$,且$\overrightarrow m∥\overrightarrow n$,函数y=f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≥0\\ x-2y+2≥0\\ x≥0\end{array}\right.$若目标函数z=mx+y(m>0)的最大值为6,则m的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案