精英家教网 > 高中数学 > 题目详情
18.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是(  )
A.4$\sqrt{3}$B.3$\sqrt{13}$C.$\sqrt{14}$D.2$\sqrt{3}$

分析 求出双曲线方程的a,b,c,可得右焦点,即为抛物线的焦点,可得抛物线的方程,联立直线方程,可得x的二次方程,运用判别式大于0以及韦达定理和中点坐标公式,以及弦长公式求得AB的长,由点到直线的距离公式可得O到AB的距离,再由三角形的面积公式,计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{3}$-y2=1的a=$\sqrt{3}$,b=1,c=$\sqrt{3+1}$=2,
右焦点为(2,0),
则抛物线y2=2px(p>0)的焦点为(2,0),
即有2=$\frac{p}{2}$,解得p=4,即抛物线方程为y2=8x,
联立直线y=kx+m,可得k2x2+(2km-8)x+m2=0,
判别式△=(2km-8)2-4k2m2>0,
设A(x1,y1),B(x2,y2),可得x1+x2=$\frac{8-2km}{{k}^{2}}$,
点M(2,2)是AB的中点,
可得$\frac{8-2km}{{k}^{2}}$=4,且2=2k+m,
解得k=2,m=-2.满足判别式大于0.
即有x1+x2=4,x1x2=1,
可得弦长AB=$\sqrt{1+4}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{5}$•$\sqrt{16-4}$=2$\sqrt{15}$,
点O到直线2x-y-2=0的距离d=$\frac{|0-0-2|}{\sqrt{4+1}}$=$\frac{2}{\sqrt{5}}$,
则△OAB(O为坐标原点)的面积是$\frac{1}{2}$d•|AB|=$\frac{1}{2}$×$\frac{2}{\sqrt{5}}$×2$\sqrt{15}$=2$\sqrt{3}$.
故选:D.

点评 本题考查双曲线和抛物线的方程和性质,考查直线方程与抛物线的方程联立,运用韦达定理和中点坐标公式和弦长公式,考查点到直线的距离公式,以及三角形的面积公式的运用,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD为直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD为底边的等腰直角三角形,且PA⊥CD.
(1)证明:PC⊥平面PAD;
(2)求直线AB与平面PBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z1,z2在复平面内对应的点关于实轴对称,若${z_1}=\frac{1+3i}{1-i}$,则z1+z2等于(  )
A.4iB.-4iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁UA)∩B=(  )
A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x≤3},B={x|x=2n-1.n∈Z},则A∩B=(  )
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA的中点,∠BAD=60°.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b∈R,则“$\frac{1}{a}$<$\frac{1}{b}$”是“$\frac{ab}{{a}^{3}-{b}^{3}}$>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案