精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面积.

分析 (Ⅰ)由椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上,列出方程组求出a=2,b=1,由此能求出椭圆C的方程.
(Ⅱ)设直线MN的方程为y=kx+m,(m≠0),由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得:(4k2+1)x2+8kmx+4m2-4=0,由此利用韦达定理、弦长公式、点到直线距离公式,结合已知条件能求出△MON的面积.

解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上,
x2=4y的准线方程为y=-1,
∴$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(Ⅱ)当直线MN的斜率存在时,设其方程为y=kx+m,(m≠0),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,得:(4k2+1)x2+8kmx+4m2-4=0,
设M(x1,y1),N(x2,y2),则${x}_{1}+{x}_{2}=\frac{-8km}{4{k}^{2}+1}$,x1x2=$\frac{4{m}^{2}-4}{4{k}^{2}+1}$,
∴|MN|=$\sqrt{({k}^{2}+1)[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{({k}^{2}+1)[(\frac{-8km}{4{k}^{2}+1})^{2}-4×\frac{4{m}^{2}-4}{4{k}^{2}+1}]}$=$\frac{4\sqrt{({k}^{2}+1)(4{k}^{2}+1-{m}^{2})}}{4{k}^{2}+1}$,
点O到直线y=kx+m的距离d=$\frac{|m|}{\sqrt{{k}^{2}+1}}$,
${S}_{△MON}=\frac{1}{2}|MN|d=\frac{2|m|\sqrt{4{k}^{2}+1-{m}^{2}}}{4{k}^{2}+1}$=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$,
∵k1k2=-$\frac{1}{4}$,
∴k1k2=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$
=$\frac{{k}^{2}×\frac{4{m}^{2}-4}{4{k}^{2}+1}+km×\frac{-8km}{4{k}^{2}+1}+{m}^{2}}{\frac{4{m}^{2}-4}{4{k}^{2}+1}}$=$\frac{{m}^{2}-4{k}^{2}}{4{m}^{2}-4}$=-$\frac{1}{4}$,
∴4k2=2m2-1,
∴S△MON=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$=2$\sqrt{\frac{1}{2}×(1-\frac{1}{2})}$=1.

点评 本题考查椭圆方程、三角形面积的求法,考查韦达定理、弦长公式、点到直线距离公式、直线方程、椭圆性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin$\frac{1}{2}$x的图象向左平移φ(φ>0)个单位得到函数g(x)=cos$\frac{1}{2}$x的图象,则φ的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是(  )
A.4$\sqrt{3}$B.3$\sqrt{13}$C.$\sqrt{14}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2sin(2x+$\frac{2π}{3}$),若将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≥0\\ x-2y+2≥0\\ x≥0\end{array}\right.$若目标函数z=mx+y(m>0)的最大值为6,则m的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-4m|+|x+$\frac{1}{m}$|(m>0).
(Ⅰ)证明:f(x)≥4;
(Ⅱ)若k为f(x)的最小值,且a+b=k(a>0,b>0),求$\frac{1}{a}+\frac{4}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“M类函数”.
(1)已知函数f(x)=sin(x+$\frac{π}{3}$),试判断f(x)是否为“M类函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,1]上的“M类函数”,求实数m的最小值;
(3)若f(x)=$\left\{\begin{array}{l}{log_2}({x^2}-2mx)\\-3\end{array}\right.\begin{array}{l}{,\;\;x≥2}\\{,\;\;x<2}\end{array}$为其定义域上的“M类函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8≥λn对任意的n∈N*都成立,则实数λ的取值范围为(-∞,10].

查看答案和解析>>

同步练习册答案