精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2sin(2x+$\frac{2π}{3}$),若将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

分析 根据y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:把函数f(x)=2sin(2x+$\frac{2π}{3}$)的图象向右平移$\frac{π}{6}$个单位长度得到的函数图象解析式为:
g(x)=f(x-$\frac{π}{6}$)=2sin[2(x-$\frac{π}{6}$)+$\frac{2π}{3}$]=2sin(2x+$\frac{π}{3}$).
故答案为:g(x)=2sin(2x+$\frac{π}{3}$).

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为(  )
A.五寸B.二尺五寸C.三尺五寸D.一丈二尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其上顶点B与左焦点F所在的直线的倾斜角为$\frac{π}{3}$,O为坐标原点OBF,三角形的周长为$3+\sqrt{3}$.
(1)求椭圆E的方程;
(2)设椭圆E的右顶点为A,不过点A的直线l与椭圆E相交于P、Q两点,若以PQ为直径的圆经过点A,求证:直线l过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁UA)∩B=(  )
A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知三棱锥A-BCD中,AB=AC=BC=2,BD=CD=$\sqrt{2}$,点E是BC的中点,点A在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为$\frac{60}{11}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,M是边BC上的点,且tan∠BAM=$\frac{1}{3}$,tan∠AMC=-$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=4x+2x+1的图象与函数y=g(x)的图象关于直线y=x对称,则g(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=4x的焦点为F,点A(0,-$\sqrt{3}$),若线段FA与抛物线C相交于点M,则|MF|=(  )
A.$\frac{4}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案