精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x-4m|+|x+$\frac{1}{m}$|(m>0).
(Ⅰ)证明:f(x)≥4;
(Ⅱ)若k为f(x)的最小值,且a+b=k(a>0,b>0),求$\frac{1}{a}+\frac{4}{b}$的最小值.

分析 (Ⅰ)利用绝对值不等式的几何意义直接证明:f(x)≥4;
(Ⅱ)利用(1)的结果,利用基本不等式转化求解即可.

解答 (Ⅰ)证明:$f(x)=|x-4m|+|x+\frac{1}{m}|≥|4m+\frac{1}{m}|=4|m|+|\frac{1}{m}|≥4$,
当且仅当$|m|=\frac{1}{2}$时取“=”号.
(Ⅱ)解:由题意知,k=4,即a+b=4,即$\frac{a}{4}+\frac{b}{4}=1$,
则$\frac{1}{a}+\frac{4}{b}=(\frac{1}{a}+\frac{4}{b})(\frac{a}{4}+\frac{b}{4})=\frac{5}{4}+\frac{b}{4a}+\frac{a}{b}≥\frac{5}{4}+1=\frac{9}{4}$,
当且仅当$a=\frac{4}{3}$,$b=\frac{8}{3}$时取“=”号.

点评 本题考查函数的最值的求法,基本不等式的应用,不等式的证明,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按图[0.0.5),[0.5,1),…,[4,4.5]分9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率,现从全校高一年级随机抽取20名学生,其中k名学生“阅读时间”在[1,2.5]小时内的概率为P(X=k),其中k=0,1,2,…20.当P(X=k)取最大时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁UA)∩B=(  )
A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,M是边BC上的点,且tan∠BAM=$\frac{1}{3}$,tan∠AMC=-$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA的中点,∠BAD=60°.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=4x+2x+1的图象与函数y=g(x)的图象关于直线y=x对称,则g(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线方程为$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是(1,$\frac{\sqrt{6}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图同心圆中,大、小圆的半径分别为2和1,点P在大圆上,PA与小圆相切于点A,Q为小圆上的点,则$\overrightarrow{PA}•\overrightarrow{PQ}$的取值范围是[3-$\sqrt{3}$,3+$\sqrt{3}$].

查看答案和解析>>

同步练习册答案