精英家教网 > 高中数学 > 题目详情
20.若a,b∈R,则“$\frac{1}{a}$<$\frac{1}{b}$”是“$\frac{ab}{{a}^{3}-{b}^{3}}$>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 ?a,b∈R,a2+ab+b2=$(a+\frac{1}{2}b)^{2}$+$\frac{3}{4}$b2≥0,当且仅当a=b=0时取等号.可得$\frac{ab}{{a}^{3}-{b}^{3}}$>0?(a-b)ab>0,?“$\frac{1}{a}$<$\frac{1}{b}$”.

解答 解:?a,b∈R,a2+ab+b2=$(a+\frac{1}{2}b)^{2}$+$\frac{3}{4}$b2≥0,当且仅当a=b=0时取等号.
∴$\frac{ab}{{a}^{3}-{b}^{3}}$>0?(a-b)ab>0,?“$\frac{1}{a}$<$\frac{1}{b}$”.
∴“$\frac{1}{a}$<$\frac{1}{b}$”是“$\frac{ab}{{a}^{3}-{b}^{3}}$>0”的充要条件.
故选:C.

点评 本题考查了函数的性质、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是(  )
A.4$\sqrt{3}$B.3$\sqrt{13}$C.$\sqrt{14}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“M类函数”.
(1)已知函数f(x)=sin(x+$\frac{π}{3}$),试判断f(x)是否为“M类函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,1]上的“M类函数”,求实数m的最小值;
(3)若f(x)=$\left\{\begin{array}{l}{log_2}({x^2}-2mx)\\-3\end{array}\right.\begin{array}{l}{,\;\;x≥2}\\{,\;\;x<2}\end{array}$为其定义域上的“M类函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设P(x,y),其中x,y∈N,则满足x+y≤4的点P的个数为15.一般地,满足x+y≤n(n∈N)的点P的个数应为$\frac{(n+1)(n+2)}{2}$个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知共面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=3,$\overrightarrow{b}$+$\overrightarrow{c}$=2$\overrightarrow{a}$,且|$\overrightarrow{b}$|=|$\overrightarrow{b}$-$\overrightarrow{c}$|.若对每一个确定的向量$\overrightarrow{b}$,记|$\overrightarrow{b}$-t$\overrightarrow{a}$|(t∈R)的最小值dmin,则当$\overrightarrow{b}$变化时,dmin的最大值为(  )
A.$\frac{4}{3}$B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(2x+$\frac{1}{x}$-1)5的展开式中常数项是-161.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8≥λn对任意的n∈N*都成立,则实数λ的取值范围为(-∞,10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线x+ay-1=0与2x+4y-3=0平行,则${({x+\frac{1}{x}-a})^5}$的展开式中x的系数为210.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列结论正确的是④.
①(x2-4x)(x+$\frac{1}{x}$)9的展开式中x2的系数为-210;
②在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;
③已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题;
④不等式ax2-(2a-3)x-1>0对?x>1恒成立的充要条件是0≤a≤2.

查看答案和解析>>

同步练习册答案