精英家教网 > 高中数学 > 题目详情
5.(2x+$\frac{1}{x}$-1)5的展开式中常数项是-161.

分析 (2x+$\frac{1}{x}$-1)5的展开式中通项公式:Tr+1=${∁}_{5}^{r}$(-1)5-r$(2x+\frac{1}{x})^{r}$.$(2x+\frac{1}{x})^{r}$的通项公式:Tk+1=${∁}_{r}^{k}$$(2x)^{r-k}(\frac{1}{x})^{k}$=2r-k${∁}_{r}^{k}$xr-2k.令r-2k=0,即可得出.

解答 解:(2x+$\frac{1}{x}$-1)5的展开式中通项公式:Tr+1=${∁}_{5}^{r}$(-1)5-r$(2x+\frac{1}{x})^{r}$.
$(2x+\frac{1}{x})^{r}$的通项公式:Tk+1=${∁}_{r}^{k}$$(2x)^{r-k}(\frac{1}{x})^{k}$=2r-k${∁}_{r}^{k}$xr-2k
令r-2k=0,则k=0,r=0;k=1,r=2;k=2,r=4.
因此常数项=${∁}_{5}^{0}(-1)^{5}$+${∁}_{5}^{2}×(-1)^{3}$×2×${∁}_{2}^{1}$+${∁}_{5}^{4}×(-1)×$${2}^{2}{∁}_{4}^{2}$=-161.
故答案为:-161.

点评 本题考查了二项式定理的应用、分类讨论方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x≤3},B={x|x=2n-1.n∈Z},则A∩B=(  )
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线${x^2}-{\frac{y}{3}^2}$=1的左右两焦点分别是F1,F2,若点P在双曲线上,且∠F1PF2为锐角,则点P的横坐标的取值范围是($\frac{\sqrt{7}}{2}$,+∞)∪(-∞,-$\frac{\sqrt{7}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等差数列{an},等比数列{bn}的公比为q(n,q∈N*),设{an},{bn}的前n项和分别为Sn,Tn.若T2n+1=S${\;}_{{q}^{n}}$,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b∈R,则“$\frac{1}{a}$<$\frac{1}{b}$”是“$\frac{ab}{{a}^{3}-{b}^{3}}$>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\frac{1-i}{1+i}$=(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,过M(2,1)的直线l的倾斜角为$\frac{π}{4}$,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直线l的参数方程与圆C的直角坐标方程;
(2)设圆C与直线l交于A,B两点,求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y={log_{\frac{1}{3}}}({-{x^2}+2x+3})$的单调增区间是(  )
A.(-1,1]B.(-∞,1)C.[1,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B为抛物线E:y2=2px(p>0)上异于顶点O的两点,△AOB是等边三角形,其面积为48$\sqrt{3}$,则p的值为(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

同步练习册答案