精英家教网 > 高中数学 > 题目详情
4.若x,y满足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,则z=x2+y2的最小值是(  )
A.2B.$\sqrt{5}$C.4D.5

分析 作出不等式组对应的平面区域,利用x2+y2的几何意义:动点P(x,y)到原点距离的平方,即可求最小值.

解答 解:设z=x2+y2,则z的几何意义为动点P(x,y)到原点距离的平方.
作出不等式组对应的平面区域如图:
由图象可知点A到原点的距离最大,原点到直线2x+y-2=0的距离最小.
由$\left\{\begin{array}{l}{x=2}\\{x-2y=0}\end{array}\right.$解得A(2,1),
所以z=x2+y2的最小值为z=22+12=5.
故选:D.

点评 本题主要考查简单线性规划的应用,利用目标函数的几何意义是解决线性规划内容的基本方法,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,如果$\overrightarrow a$∥$\overrightarrow b$,那么$cos(\frac{π}{3}-2α)$的值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数$f(x)=({{x^2}-2x})lnx+({a-\frac{1}{2}}){x^2}+2({1-a})x+a$.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当a<-2时,讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)求证:g(x)≥x+1(x∈R);
(2)设h(x)=f(x+1)+g(x),若x≥0时,h(x)≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y,z满足$\left\{\begin{array}{l}xy+2z=1\\{x^2}+{y^2}+{z^2}=5\end{array}\right.$则xyz的最小值为$9\sqrt{11}-32$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={1,2,3,4},B={x|x≤2},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若存在两个正数x,y,使得等式${x^2}•{e^{\frac{y}{x}}}-2a{y^2}=0$成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.$[{\frac{e^2}{8},+∞})$B.$({0,\frac{e^3}{27}}]$C.$[{\frac{e^3}{27},+∞})$D.$({0,\frac{e^2}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为(  )
A.5B.$\sqrt{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow m=(1,\sqrt{3}sin(wx+\frac{π}{6})),\overrightarrow n=(2coswx,y)(0<w<2)$,且$\overrightarrow m∥\overrightarrow n$,函数y=f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

同步练习册答案