精英家教网 > 高中数学 > 题目详情
9.设全集U=R,集合A={1,2,3,4},B={x|x≤2},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

分析 根据补集与交集的定义,写出A∩(∁UB)即可.

解答 解:全集U=R,集合A={1,2,3,4},B={x|x≤2},
∴∁UB={x|x>2},
∴A∩(∁UB)={3,4}.
故选:B.

点评 本题考查了集合的定义与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.
(1)试判断函数${f_1}(x)={x^2}$与${f_2}(x)={x^{\frac{1}{2}}}$是否是“L函数”;
(2)若函数g(x)=3x-1+a(3-x-1)为“L函数”,求实数a的取值范围;
(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k-1,2k)(k∈N*),都有$f(x)-f(\frac{1}{x})>$$\frac{x}{2}-\frac{2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在(0,∞)上的函数f(x)的导函数f'(x)是连续不断的,若方程f'(x)=0无解,且?x∈(0,+∞),f[f(x)-log2015x]=2017,设a=f(20.5),b=f(log43),c=f(logπ3),则a,b,c的大小关系是a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex-ax+b(a,b∈R).
(Ⅰ)若a=b=1,求f(x)在区间[-1,2]上的取值范围;
(Ⅱ)若对任意x∈R,f(x)≥0恒成立,记M(a,b)=a-b,求M(a,b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,则z=x2+y2的最小值是(  )
A.2B.$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\sqrt{3}sin2x-cos2x$的图象在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增,则正数a的取值范围是(  )
A.$[{\frac{π}{6},\frac{5π}{12}}]$B.$[{\frac{5π}{12},π}]$C.$[{\frac{π}{4},π}]$D.$[{\frac{π}{4},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.上饶高铁站B1进站口有3个闸机检票通道口,若某一家庭有3个人检票进站,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这个家庭3个人的不同进站方式有(  )种.
A.24B.36C.42D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足不等式组$\left\{\begin{array}{l}{-3≤3x-y≤-1}\\{-1≤x+y≤1}\end{array}\right.$,若z=ax+y有最大值$\frac{5}{2}$,则实数a的值是(  )
A.2B.$\frac{5}{2}$C.-2D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设△ABC的内角A,B,C所对边的长分别为a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,则△ABC的面积为$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案