分析 由正弦定理得a=2b,由余弦定理得b=$\frac{4\sqrt{3}}{3}$,由此能求出△ABC的面积.
解答 解:∵△ABC的内角A,B,C所对边的长分别为a,b,c.
sinA=2sinB,c=4,C=$\frac{π}{3}$,
∴a=2b,∴16=b2+4b2-2×$2b×b×cos\frac{π}{3}$,
解得b=$\frac{4\sqrt{3}}{3}$,
∴△ABC的面积为S=$\frac{1}{2}×\frac{4\sqrt{3}}{3}×\frac{8\sqrt{3}}{3}×sin\frac{π}{3}$=$\frac{8\sqrt{3}}{3}$.
故答案为:$\frac{8\sqrt{3}}{3}$.
点评 本题三角形面积的求法,考查余弦定理、正弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {3,4} | C. | {1} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,0] | B. | [-2,0)∪[2,+∞) | C. | [-2,0) | D. | (-∞,0)∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数分组 | 游客人数 |
| [0,60) | 100 |
| [60,85) | 200 |
| [85,100] | 300 |
| 总计 | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x与y=x+2 | B. | y=x与y=-x-2 | C. | y=-x与y=x-2 | D. | y=x与y=-x+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com