精英家教网 > 高中数学 > 题目详情
19.设△ABC的内角A,B,C所对边的长分别为a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,则△ABC的面积为$\frac{8\sqrt{3}}{3}$.

分析 由正弦定理得a=2b,由余弦定理得b=$\frac{4\sqrt{3}}{3}$,由此能求出△ABC的面积.

解答 解:∵△ABC的内角A,B,C所对边的长分别为a,b,c.
sinA=2sinB,c=4,C=$\frac{π}{3}$,
∴a=2b,∴16=b2+4b2-2×$2b×b×cos\frac{π}{3}$,
解得b=$\frac{4\sqrt{3}}{3}$,
∴△ABC的面积为S=$\frac{1}{2}×\frac{4\sqrt{3}}{3}×\frac{8\sqrt{3}}{3}×sin\frac{π}{3}$=$\frac{8\sqrt{3}}{3}$.
故答案为:$\frac{8\sqrt{3}}{3}$.

点评 本题三角形面积的求法,考查余弦定理、正弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={1,2,3,4},B={x|x≤2},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{2-x},x<2}\\{\frac{3}{4}{x}^{2}-3x+4,x≥2}\end{array}\right.$,若不等式a≤f(x)≤b的解集恰好为[a,b],则b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1-x)=f(1+x),且在区间[-1,0]上的最大值为3,若函数g(x)=|f(x)|-mx有唯一零点,则实数m的取值范围是(  )
A.[-2,0]B.[-2,0)∪[2,+∞)C.[-2,0)D.(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow m=(1,\sqrt{3}sin(wx+\frac{π}{6})),\overrightarrow n=(2coswx,y)(0<w<2)$,且$\overrightarrow m∥\overrightarrow n$,函数y=f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若从2个滨海城市和2个内陆城市中随机选取1个取旅游,那么恰好选1个滨海城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-(a+2)x+lnx+b(a>0).
(1)若函数f(x)在x=1处的切线方程为y=x-1,求实数a,b的值;
(2)在(1)的b下,当a≥2时,讨论函数f(x)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为加强对旅游景区的规范化管理,确保旅游业健康持续发展,某市旅游局2016年国庆节期间,在某旅游景点开展了景区服务质量评分问卷调查,调查情况统计如表:
分数分组游客人数
[0,60)100
[60,85)200
[85,100]300
总计600
该旅游局规定,将游客的评分分为三个等级,评分在[0,60)的视为差评,在[60,85)的视为中评,在[85,100)的视为好评,现从上述600名游客中,依据游客评价的等级进行分层抽样,选取了6名游客,以备座谈采访之用.
(Ⅰ)若从上述6名游客中,随机选取一名游客进行采访,求该游客的评分不低于60分的概率;
(Ⅱ)若从上述6名游客中,随机选取两名游客进行座谈,求这两名游客的评价全为“好评”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线y=1+$\frac{1}{1-x}$的对称轴的方程是(  )
A.y=-x与y=x+2B.y=x与y=-x-2C.y=-x与y=x-2D.y=x与y=-x+2

查看答案和解析>>

同步练习册答案