精英家教网 > 高中数学 > 题目详情
1.曲线y=1+$\frac{1}{1-x}$的对称轴的方程是(  )
A.y=-x与y=x+2B.y=x与y=-x-2C.y=-x与y=x-2D.y=x与y=-x+2

分析 y=-$\frac{1}{x}$的对称轴的方程是y=x与y=-x,曲线y=1+$\frac{1}{1-x}$是由y=-$\frac{1}{x}$向右平移1个单位,向上平移1个单位得到,可得对称轴的方程.

解答 解:y=-$\frac{1}{x}$的对称轴的方程是y=x与y=-x
曲线y=1+$\frac{1}{1-x}$是由y=-$\frac{1}{x}$向右平移1个单位,向上平移1个单位得到,对称轴的方程是y=x与y=-x+2,
故选D.

点评 本题考查函数的图象,考查图象变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设△ABC的内角A,B,C所对边的长分别为a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,则△ABC的面积为$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{1}{2}$,点A在椭圆C上,|AF1|=2,∠F1AF2=60°,过F2与坐标轴不垂直的直线l与椭圆C交于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P,Q的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设F1、F2分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=$\sqrt{3}$,△BF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线${x^2}-{\frac{y}{3}^2}$=1的左右两焦点分别是F1,F2,若点P在双曲线上,且∠F1PF2为锐角,则点P的横坐标的取值范围是($\frac{\sqrt{7}}{2}$,+∞)∪(-∞,-$\frac{\sqrt{7}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{2}{x}$-2+2alnx.
(1)讨论函数f(x)的单调性;
(2)若f(x)在区间[$\frac{1}{2}$,2]上的最小值为0,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等差数列{an},等比数列{bn}的公比为q(n,q∈N*),设{an},{bn}的前n项和分别为Sn,Tn.若T2n+1=S${\;}_{{q}^{n}}$,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\frac{1-i}{1+i}$=(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)在($\frac{π}{6}$,$\frac{π}{2}$)上单调,且满足f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,则ω=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案